PHYSICS 2DL - SPRING 2010

Prof. Brian Keating

2Day in 2DL

Questions/Announcements

- Error propagation, chi sq review (ch 8 for last time, ch 10 binomial, ch 11 poisson)
- Special Topics: DAQ part 2 - More on physical constants

Electronic Measurement using Digital to Analog Conversion

χ^{2} TEST for FIT

Gauss distribution:

$\tilde{\chi}^{2}$ distribution:

Table D. The percentage probability $\operatorname{Prob}_{d}\left(\widetilde{\chi}^{2} \geqslant \tilde{\chi}_{0}^{2}\right)$ of obtaining a value of $\tilde{\chi}^{2} \geqslant \widetilde{\chi}_{0}{ }^{2}$ in an experiment with d degrees of freedom, as a function of d and $\widetilde{\chi}_{0}{ }^{2}$. (Blanks indicate probabilities less than 0.05%.)
Table D

Today Ch 10 and Ch 11

- Review ch 8 least sq fit
- Ch $10=$ Binomial Dist.
- Ch 11 = Poisson

NerdTests.com	The Nerd Test ver 2.0 (click here to take)
	\%Nerd Percentile \%
Science / Mat	
logy / Computer:	
Sci-Fi/ Comic:	
History / Literature:	
Dumb / Dork / Mukwar	-66\%
Slightly Dorky	y Nerd King

Ch 10 Binomial Distribution

Why Binomial? Because only 2 outcomes of a given test. Either X happened or it didn't, where ' X ' can be a complicated statement like:
"When throwing 3 coins sequentially, what's the probability that the sequence observed was HHT"

Ch 10 Binomial Distribution

Binomial coefficient

20 trials, with $p=q=1 / 2$
Symmetric only if $p=q$.

Ch 10 Binomial Distribution

The binomial distribution describes the behavior of a count variable X if the following conditions apply:

1: The number of observations n is fixed. 2: Each observation is independent.
3: Each observation represents one of two outcomes ("success" or "failure").
4: The probability of "success" p is the same for each outcome.

Binomial Distributions in Practice

- You should really know when to use the Gaussian hypothesis. When the number of attempts/trials is > 15, you are safe.

$$
\begin{array}{ll}
\text { Then : } & \mu_{x}=n p \\
& \sigma_{x}^{2}=n p(1-p)
\end{array}
$$

-Then use the one or two sided t-probability distributions to get the probability.
-This is nice also because calculating the factorial is very computationally demanding when $\mathrm{N}>50$.

Example

- What's the probability of getting 27 Heads out of 34 tosses of a coin?

$$
\begin{aligned}
& B_{27,1 / 2}(v)=\frac{34!}{27!7}\left(\frac{1}{2}\right)^{27} \begin{array}{l}
\text { MICROSOFT EXCEL: } \\
\\
\text { =BINOMDIST(23,36,0.5,FALSE) }
\end{array} \\
& G_{\overline{x=17, \sigma=\sqrt{17(0.5)}}}(v)=\frac{1}{2.6 \sqrt{2 \pi}} \exp \left[-(27-\overline{17}) / 2(2.9)^{2}\right] \\
& \text { MICROSOFT EXCEL: } \\
&=\text { NORMDIST(x,mean,standdev,FALSE) }
\end{aligned}
$$

How Good is Gauss?

			numb success	total N	Binomial (exact)	Normal (Approx)	difference
			23	36	0.033626414	0.033159046	0.000467
			1	1	0.5	0.131146572	0.368853
			2	2	0.25	0.125794409	0.124206
	0.4000		3	3	0.125	0.117355109	0.007645
			4	4	0.0625	0.106482669	-0.04398
	0.3000	\square	5	5	0.03125	0.093970625	-0.06272
(1)		19	6	6	0.015625	0.080656908	-0.06503
U	0.2000		7	7	0.0078125	0.067332895	-0.05952
(1)			8	8	0.00390625	0.054670025	-0.05076
(1)	0.1000		9	9	0.001953125	0.043172532	-0.04122
-			10	10	0.000976563	0.033159046	-0.03218
	0		11	11	0.000488281	0.024770388	-0.02428
			12	12	0.000244141	0.017996989	-0.01775
		N trials	13	13	0.00012207	0.012717541	-0.0126
			14	14	$6.10352 \mathrm{E}-05$	0.00874063	-0.00868
			12	15	0.013885498	0.043172532	-0.02929
			16	16	1.52588E-05	0.003798662	-0.00378
			17	17	7.62939E-06	0.002402033	-0.00239
			18	18	3.8147E-06	0.001477283	-0.00147

